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Effects of overburden on joint spacing in layered rocks
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Abstract

When a layered system of rock beds is subjected to a sufficiently large extensional strain, joints form in the competent layers. Previous anal-
yses have shown that the ratio between joint spacing and competent layer thickness decreases as the applied strain increases. Further, if the entire
interface between the competent layer and the matrix fails in shear (slip), no new joints can form and a lower bound on the joint spacing is
reached. In this paper, a joint spacing analysis is developed to explicitly account for the effects of overburden depth. The resulting model is
a pair of non-linear equations that can be solved for the characteristic joint spacing as a function of layer thickness, applied strain, and over-
burden depth. The model results show that, for a given applied strain, the joint spacing first decreases and then increases with depth. This be-
havior is controlled by the opposing effects of depth-increasing shear strength along the competent layerematrix interface and depth-increasing
compressive prestress. The analysis also reveals that the lower bound (saturation) joint spacing is strongly dependent on depth. Within the choice
of realistic physical parameters, predicted values of the saturation-spacing-to-layer-thickness ratio span the range of values observed in the field.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When layered rocks are subjected to an extensional strain in
a direction parallel to the layers, tensile stresses are induced
(Hobbs, 1967; Mandal et al., 1994; Ji and Saruwatari, 1998;
Bai et al., 2000; Bai and Pollard, 2000a,b). Within the frame-
work of elastic system response, the level of tensile stress
achieved will naturally depend on the value of the elastic
(Young’s) modulus. In a layered system consisting of two
rock types, the stresses will be larger in the layer with the
larger modulus (the competent layer) and lower in adjacent
layers with a smaller modulus (incompetent layers). When
the tensile stress in the competent layer reaches its tensile
strength, joints will form thereby relieving the stress. Observa-
tions indicate that the spacing between joints in layered rocks
is relatively uniform and exhibits a characteristic length scale
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associated with the applied strain (Hobbs, 1967; Mandal et al.,
1994; Zhao and Ji, 1997; Ji and Saruwatari, 1998).

If the spacing between joints is larger than the thickness of
the competent layer, an explanation for this behavior can be
obtained using the so-called ‘‘shear-lag’’ model first proposed
by Cox (1952) in the study of fibers in paper. A recent example
can be found in Ji and Saruwatari (1998), Ji et al. (1998) who
extended previous work by Hobbs (1967) to develop a model
that, on input of layer geometry and elastic properties, predicts
the characteristic spacing between joints. On using values
from the measured ranges of modulus and strength of rock
layers (see Figs. 7 and 8), an estimation of the tectonic strain
imposed on Earth’s crust was made by matching results from
the analysis to field observations of joint spacing. While Ji and
Saruwatari (1998) assumed perfect bonding between the rock
layers as in earlier analyses, the model in Ji et al. (1998) is
noteworthy since it represents the first attempt at including
the effect of slip between the competent and matrix layers.
An apparent limitation in this work, however, is that the influ-
ence of the depth of the overburden is not explicitly accounted
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for. This depth could influence the predicted joint spacing in
two ways. If a MohreCoulomb slip failure criterion is used
(e.g. Goodman, 1989), the value of the layerematrix interfa-
cial shear strength will, through the normal stress in the fric-
tion term, increase with depth of the overburden. This
increase will in turn lead to a higher tensile stress in the com-
petent layer associated with a given extensional strain and
thereby decrease the predicted joint spacing. On the other
hand, an increasing overburden pressure will also induce
a higher (horizontal) compressive prestress in the competent
layer as predicted by the Poisson effect in elasticity (e.g.
Malvern, 1969) whereby a body subject to uniaxial compres-
sion exhibits extensional strain in the transverse direction.
The increase of this compressive prestress, which can be as-
sumed to be uniform in the lateral direction, will mean that
an observed joint spacing in the competent layer is associated
with a larger tectonic strain. Hence, it is expected that the
incorporation of MohreCoulomb slip and initial prestress in
the analysis will result in a dependence of the characteristic
joint spacing on the overburden depth of the competent layer;
a dependence that is not investigated in earlier studies (Hobbs,
1967; Ji and Saruwatari, 1998; Ji et al., 1998; Bai et al., 2000;
Bai and Pollard, 2000a,b).

Recently, a semi-analytical model for the crack spacing in
a thermally-shrinking thin film section placed on a thermally
inert substrate has been proposed and tested in the materials
literature (Timm et al., 2003; Guzina et al., 2004). In this
model, the interface between the film and substrate is allowed
to slip if the contact shear stress exceeds a threshold value. As
examined in Timm et al. (2003), this is achieved by using
a generalized Winkler foundation, consisting of a series of
sliders and springs, to describe and account for the interface
and interaction between the film and its substrate. This model
assumes a MohreCoulomb failure criterion for the filme
substrate interface and incorporates the effect of a pre-existing
(e.g. residual) stress through an appropriate reduction of the
effective tensile strength of the film. The major objective of
this paper is to extend the methodology of Timm et al.
(2003) and develop a model for joint spacing in geological
systems that explicitly accounts for the depth of overburden
through (i) the MohreCoulomb failure criterion controlling
the slip between the competent and matrix layers, and (ii)
the presence of horizontal compressive prestress in the compe-
tent layer.

Shear-lag models have been extensively used, verified, and
experimentally validated across a range of physical and natural
systems (e.g. Hu and Evans, 1989; Chen et al., 1999; Timm
et al., 2003; Guzina et al., 2004). When incorporating the ef-
fects of layer slip and initial compressive prestress one must
keep in mind, however, that the validity of the one-dimen-
sional analyses underlying ‘‘conventional’’ (i.e. no-slip)
shear-lag models requires that the spacing between joints be
larger than the thickness of the jointed layer. Indeed, as dem-
onstrated by the two-dimensional finite element analysis of
bonded layers in Bai et al. (2000), when the spacing-
to-thickness ratio falls below unity a compressive stress
develops locally between the joints; a state that will prevent
the formation of additional joints. In this way, Bai et al.
(2000) and Bai and Pollard (2000a,b) suggest that the spacing-
to-thickness ratio of approximately 1 corresponds to joint
saturation, i.e. the situation where a further increase in tec-
tonic strain will not lead to the formation of additional joints.
In contrast, a shear-lag model where the interfacial slip is like-
wise neglected (e.g. Ji and Saruwatari, 1998) will, under an
increasing strain, continue to form joints, down to the limit
of zero joint spacing, well below the point where one would
expect the shear-lag model to be valid. With the incorporation
of interfacial slip, however, the shear-lag model does result in
a non-zero saturation joint spacing (Ji et al., 1998). In physical
terms, when the applied strain goes beyond the point where the
entire interface between an intact segment of the competent
layer and the matrix fails in slip, there is no additional stress
transfer and consequently no new joints can form. This alter-
native explanation for saturation spacing has been validated
(Timm et al., 2003; Guzina et al., 2004) for other physical
systems. In this study, the featured (slip-based) saturation
mechanism will be shown to be valid for all joint spacing-
to-thickness ratios in layered rock beds.

In the next section, the groundwork for the model develop-
ment is provided and a theoretical argument as to why there
should be a characteristic joint spacing is presented. This is
followed by a full theoretical development of the model by
building on the earlier works of Ji and Saruwatari (1998), Ji
et al. (1998), Timm et al. (2003) and Guzina et al. (2004).
Analysis with the revised model reveals that both the joint
spacing and its saturation limit are strongly dependent on
the overburden depth. Within the choice of realistic physical
parameters, predicted values of the saturation-spacing-
to-layer-thickness ratio span the range of values observed in
the field.

2. Stress development and cracking of a competent layer

The objectives of this section are to (i) establish a general
elastic-slip model for the stress state in a layered rock system
subject to extensional strain, and (ii) use the model to describe
how joints form and why there is a characteristic spacing be-
tween the joints.

To develop the necessary model, consider a layered rock
system shown in Fig. 1a consisting of alternating incompetent,
i.e. ‘‘soft’’ layers (so-called matrix) and their competent, i.e.
‘‘stiff’’ counterparts. The matrix layers have thickness d,
Young’s modulus Em, and Poisson’s ratio nm; the competent
layers are characterized by thickness t, Young’s modulus
Ec> Em, and Poisson’s ratio nc. The breadth (the out of plane
dimension) of the system is b; its (constant) unit weight is de-
noted by g¼ rg, where r is the density of the rock and g
stands for gravitational acceleration. In the absence of an ap-
plied extensional strain, the layered system is characterized
by natural joints in the competent layer, resulting in an ini-
tially undamaged section of the competent layer of length l.
For consistency with earlier works, it is assumed l[b so
that the plane stress approximation can be used in the analysis.
With reference to Fig. 1b, the representative (cut-out) domain
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Fig. 1. Schematic of (a) the layered bed system, (b) representative domain, and (c) approximate shear stress distribution at a section x¼ const. in the competent

layer. Dark gray is the competent layer, and light gray indicates the matrix.
of the system consists of a single competent layer sandwiched
between two matrix half-layers of thickness d/2. In this sys-
tem, horizontal axial stress is induced by displacing the end
sections of the matrix layers, located at x¼�l/2, by the
respective amounts �Dx while keeping the end sections of
the competent layer traction-free. In this way the matrix layers
are subjected to an average extensional strain e¼ 2Dx/l.
Further, through symmetry, any subsequent analysis can be
carried out by restricting attention to the rectangular domain
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2
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2
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ux ¼ 0; sxy ¼ 0; x ¼ 0; 0�
��y��� tþ d

2
;

ux ¼ Dx; uy ¼ 0; x ¼ l

2
;

t

2
<
��y��� tþ d

2
;

sxx ¼ 0; sxy ¼ 0; x ¼ l

2
; 0�

��y��< t

2
;

txy ¼ 0; syy ¼�p; 0� x � l

2
;
��y��¼ tþ d

2
;

ð1Þ

where ux(x,y) and uy(x,y) are the horizontal and vertical dis-
placements; p(h) denotes the overburden pressure; h is the
depth of the overburden at the origin of the local system
(x¼ y¼ 0); sxx(x,y) and syy(x,y) are the tensile stresses in
the x and y directions, and sxy(x,y) is the associated shear
stress.

For the ensuing analysis, it is useful to introduce the auxil-
iary variables
sxhsxðxÞ ¼
1

t
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where sx and ux denote, respectively, the average normal
stress and axial displacement in the competent layer at
a cross-section x¼ const. Owing to the problem symmetry
with respect to the y-axis which requires that sxy(x,�y)¼
�sxy(x,y) (see e.g. Malvern, 1969), one further finds that the
average of the shear stress and its derivative with respect to
x in the competent layer both vanish, i.e.

d
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To approximate the two-dimensional (2D) problem in
Fig. 1b in terms of a simplified 1D model, a key assumption
is next made that the variation of the shear stress, sxy, in the
competent layer is approximately linear with y (see, e.g. Bai
and Pollard, 2000a) so that
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as illustrated in Fig. 1c. On the basis of Eqs. (2)e(4), the 2D
equilibrium equations for the competent layer with zero body
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force, when integrated with respect to y, degenerate to an
uncoupled format
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With reference to the boundary conditions in Eq. (1), the
second equation of the new (integrated) system is identically
satisfied by taking syy(x,y)¼�p¼ const. Accordingly, the
equilibrium problem at hand is effectively reduced to an ordi-
nary differential equation

dsx

dx
¼�2tx

t
; 0� x � l

2
; ð6Þ

in terms of the average axial stress, sx, subject to the boundary
condition

sx

�
l

2

�
¼ 0: ð7Þ

Through the above derivation it is shown that the ensuing
1D shear-lag model, satisfying Eqs. (6) and (7), is mechani-
cally valid as it conforms with the 2D static equilibrium in
an average (i.e. integral) sense regardless of the functional
variation underlying tx(x). It is further noted that the average
normal stress, sx, and the average shear stress,
1=t
R t=2

�t=2 sxyðx; yÞdy, are both zero at the fracture face (x¼
l/2) since the latter quantity vanishes identically by virtue of
Eq. (3). In this way the perceived inconsistencies of the
shear-lag model, examined in Bai and Pollard (2000a), are
circumvented by interpreting the featured variables in an
average rather than a local sense.

At this point the outcome of the 1D model, i.e. the solution
of Eqs. (6) and (7), is controlled by the specification of the in-
terfacial shear stress tx. In general, tx(x) will depend on (i)
material properties of the matrix and competent layer; (ii) ge-
ometry of the system; (iii) average extensional strain, e, of the
matrix, and (iv) mechanical response of the layer interface to
loading. In all cases, however, it is expected that the interfacial
shear stress tx will take the value of zero at x¼ 0 and increase
to a maximum value at x¼ l/2. For example, using the model
described in Section 3 with l/t¼ 10, if an elastic response and
a perfect bonding between the matrix and competent layer are
assumed, the shear stress will increase monotonically as
shown in curve ‘‘a’’ of Fig. 2.

A more realistic assumption for the interface response is to
allow for the slip to occur between the matrix and competent
layer at sections where the shear stress tx reaches a given
threshold tf. In this case, as shown in curves ‘‘b’’ and ‘‘c’’
of Fig. 2, beyond the point x¼ xt, where the threshold value
is reached, the interface shear stress takes a constant value
tf. For completeness, it can be shown by virtue of the equilib-
rium Eq. (6) that all cases in Fig. 2 result in a monotonic de-
crease in the average axial stress, from a value of sx¼ sx,max at
x¼ 0 to a value of sx¼ 0 at x¼ l/2, see Fig. 3.
As the extension in the matrix (i.e. average strain e) is
increased, the maximum value of sx(x) at the center of the
competent layer will increase; at some point in the process,
the maximum stress will reach the tensile strength S of the
competent layer, and the latter will split into two parts. For
a given material and geometric configuration (i.e. layer elastic
moduli and thicknesses), the maximum stress that can be
reached in the competent layer will increase with intact length
of the competent layer. In this way, for a given strain e, there is
a characteristic segment length, lc(e), for which the maximum
stress in the middle of the segment is

sx;max ¼ S:

As a result, competent layer segments longer than lc(e) will
necessarily break in two. In contrast, the maximum stress in
competent segments shorter than lc(e) will not reach the lim-
iting value of S, and such segments will remain intact. Accord-
ingly, a competent layer with an initial segment length l> lc(e)
will, when its associated matrix is subjected to an average
extensional strain e, form joints with a spacing bounded by
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lcðeÞ
2
� l� lcðeÞ; ð8Þ

so that the average joint spacing is

lc ¼ 0:75lcðeÞ: ð9Þ

3. Stress model for the competent layer
including overburden

If the effects of overburden are taken into account, the ini-
tial horizontal compressive stress induced in the competent
layer at depth h can be calculated, using the premise of plane
stress, as ncgh where g is the (average) unit weight of the lay-
ered system and nc is the Poisson’s ratio of the competent layer
(e.g. Malvern, 1969). In this way the maximum intact segment
length lc(e, h) corresponds to the segment in which the max-
imum stress is

sx;max ¼ S0 h Sþ ncgh: ð10Þ

Beyond Eq. (10), the key to obtaining a model that can pre-
dict the characteristic joint spacing lc in Eq. (8) involves
a specification of the interfacial shear stress tx in Eq. (6),
and a solution for the axial stress sx in the competent layer
that satisfies Eqs. (6) and (7). A modeling tool that allows
for the specification of an interfacial shear stress which can ac-
count for a slip between the competent layer and the matrix is
to divide the featured interface segment 0 � x � l=2 into two
distinct sections, namely a non-slip (elastic reaction) zone,
0� x� xt, and a sliding region, xt � x � l=2.

These regions can be modeled using a mechanical analog,
namely a generalized Winkler foundation (Timm et al.,
2003), where the interface is replaced by a sequence of sliders
in the slip region and a sequence of springs in the non-slip
region, see Fig. 4. In this way, Eq. (6) can be written as

dsx

dx
¼�

8>><
>>:

2kðvx � uxÞ
A

; 0� x � xt

2tf

t
; xt � x � l

2

; ð11Þ
where A¼ tb is the cross-sectional area of the competent layer.
The numerator of the first component on the right-hand-side of
Eq. (11) can be viewed as a the product of a ‘‘spring’’ constant
k and a relative displacement, ðvx � uxÞ, between the matrix
and the competent layer, where ux is the average displacement
in the competent layer and vx is the displacement that would
occur in the matrix if the competent layer were absent. This
term has the form of the shear-lag model first introduced by
Cox (1952) and is used as the foundation of many previous
models of joint spacing (e.g. Ji and Saruwatari, 1998; Hu
and Evans, 1989). The essential feature in using the shear-
lag model rests in establishing an approximation for the spring
constant k that matches the two-dimensional behavior of the
strained matrixecompetent layer system. In the version of
the shear-lag model proposed by Ji and Saruwatari (1998),
an approximate form for the decay of the shear stress in the
matrix layer (in the direction normal to the interface) is as-
sumed, resulting in the spring constant

k ¼ bEm

2Mð1þ nmÞ
; ð12Þ

where nm is the Poisson’s ratio of the matrix;

M ¼
ZðtþdÞ=2

t=2

�
dþ t� 2y

d� tþ 2y

�n

dy; ð13Þ

and n is an integer. With the value of n¼ 3 as suggested by Ji
and Saruwatari (1998), the integral in Eq. (11) can be evalu-
ated to give M¼ (3 log 2� 2)d where d is the thickness of
the matrix layer.

The second component on the right-hand-side of Eq. (10)
accounts for the slip region where tf is the shear stress at
failure. Within the framework of the MohreCoulomb failure
criterion adopted in this study,

tf ¼ cþ gh tan f; ð14Þ

where c is the cohesion and f is the friction angle character-
izing the matrixecompetent layer interface (e.g. Goodman,

1989).

x
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(spring)

Region II
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y

Fig. 4. Mechanical analog of the competent layerematrix system.
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By definition, the average extensional strain in the matrix is

e¼ dvx

dx
; ð15Þ

the shear stress at failure in Eq. (14) is independent of x, and
the axial stress in the competent layer can be written by virtue
of Eq. (2) as

sx ¼ Ec

dux

dx
: ð16Þ

Hence, Eq. (11) can be differentiated with respect to x to
give

d2sx

dx2
¼�

8><
>:
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0; xt � x � l

2

; ð17Þ

subject to boundary conditions

dsx

dx
ð0Þ ¼ 0; sx

�
l

2

�
¼ 0; ð18Þ

where the first equation in Eq. (18) is driven by the symmetry
of the problem. Beyond Eq. (18), the stress component sx must
also satisfy the continuity conditions at the transition (x¼ xt)
from the slip to no-slip region, namely

sx
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x�t
�
¼ sx
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t

�
l

2
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�
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The solution that satisfies Eqs. (17)e(19) can be obtained
as

sx ¼�
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where

b¼
ffiffiffiffiffiffiffiffi
2k

EcA

r
; h¼ btf b

ke
; ð21Þ

and k is calculated from Eq. (12) with M¼ (3 log 2� 2)d.
In Eq. (20), the location of xt of the transition from no-

slip to slip region is unknown. Two steps are required to
find this location. In the first place the value of h in Eq.
(21) is used to determine if, for a given applied strain e

and intact segment length l, slip can occur in the system.
It can be shown that the value of the slope of the stress, cal-
culated from the first component of Eq. (20), will always be
less than 2tf /t, thereby precluding slip whenever h� 1 (see
Timm et al., 2003). If, on the other hand, the value of h is
<1 and the length of the competent layer l �
ð2=bÞtanh�1ðhÞ, a part of the interface between the compe-
tent layer and the matrix will slip. Under this condition,
the value of the transition point xt can be found from Eq.
(6) which requires that

dsx

dx

�
x�t
�
¼ dsx

dx

�
xþt
�
¼�2tf

t
: ð22Þ

On the basis of Eqs. (20) and (22), one arrives at the non-
linear equation

xt ¼
1

b
tanh�1

0
BB@ h

1� bh

�
l

2
� xt

�
1
CCA; 0< xt < l=2; ð23Þ

for xt which can be rearranged as

xt ¼
l

2
þ 1

bh

�
h

tanhðbxtÞ
� 1

�
; ð24Þ

a more stable basis for an iterative solution in terms of xt.

4. Applicability of the 1D analysis

In Timm et al. (2003), it was shown that the one-dimensional
(1D) stress distribution model provides a good approximation
of the so-called ‘‘thin film’’ 2D systems wherein the thickness
of the fractured layer is at least an order of magnitude smaller
than all other characteristic lengths of the problem. For the sit-
uation at hand, however, the latter assumption often does not
hold and it is necessary to investigate the applicability of for-
mula (20) to layered rock beds where the competent layer thick-
ness (t) may be comparable to its matrix counterpart (d ), joint
spacing (l), or both. To this end, it is instructive to adopt the
problem parameters as in Bai and Pollard (2000b) who assumed
Ec¼ Em¼ 30 GPa, nc¼ nm¼ 0, 25, t¼ 0.2 m, and d¼ 0.6 m.
This configuration is also similar to that in Bai and Pollard
(2000a) who assumed Ec¼ Em¼ 40 GPa and demonstrated,
via numerical simulations, that the ratio Ec/Em has only a lim-
ited effect on the stress distribution between the joints.

In what follows, the 2D stress analysis of the competent
layer is performed using the finite element code FEMLAB 3
(www.femlab.com) for two characteristic cases, namely (i)
the no-slip regime (xt¼ l/2) as in Bai and Pollard (2000a,b),
and (ii) the full-slip case (xt¼ 0). For these two configurations,
the representative domain and the relevant boundary condi-
tions are assumed as in Fig. 5 by making use of the problem
symmetries in Eq. (1). To ensure the accuracy of the plane
stress analysis, all finite element calculations are performed
with an adaptive mesh consisting of no less than 17,000 qua-
dratic triangular (Lagrange) elements.

With reference to the definitions in Eq. (2), the left panel in
Fig. 6 compares the average axial stress in the competent layer

sxðxÞ ¼
1

t

Zt=2

�t=2

sxxðx; yÞdy;

stemming from the 2D finite element analysis, with its one-
dimensional approximation (20) assuming joint-spacing-
to-layer-thickness ratios l/t¼ 1, 2, 5 and 10. As can be seen

http://www.femlab.com
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Fig. 5. Two-dimensional stress analysis: representative domain and boundary conditions for the no-slip case (left) and the full-slip case (right).
from the display the 1D model, despite its simplicity, maintains
a reasonable approximation of the more complex 2D case, even
for the ‘‘short’’ joint spacing l/t¼ 1. One may further note that,
consistent with Bai and Pollard (2000a,b), the finite element
analysis used to generate the ‘‘no-slip’’ data indeed indicates
the presence of a compressive axial stress (sxx) in the middle
of the competent layer for ratios l/t< 0.97 when Ec¼ Em.

For completeness, the right panel in Fig. 6 plots the average
axial stress, sx, computed using finite element simulations for
the full-slip situation xt¼ 0. In this case, the variation of sx is in-
distinguishable from the linear 1D pattern given by the second
equation in Eq. (20), see also Fig. 3. With reference to the
full-slip configuration in Fig. 5, this result should not be surpris-
ing as it simply confirms that the finite element solution satisfies
the static equilibrium on each of its segments ½x; l=2�. Indeed,
this equilibrium argument must hold for any joint-spacing-to-
layer-thickness ratio, and thus the observed linear variation of
sx applies equally for the range 0< l/t< 1. In other words, un-
der a full-slip condition, the shear-lag model is valid for all
joint-spacing-to-layer-thickness ratios.

5. Characteristic joint spacing

By virtue of Eq. (20), the maximum stress in a competent
layer of intact length l is given by

sx;max ¼ sxð0Þ ¼ Ece

	
1� 1

coshðbxtÞ

�
1� bh

�
l

2
� xt

��

:

ð25Þ
On equating this stress to the apparent (prestress-augmented)
tensile strength S0 according to Eq. (10), an equation for the
characteristic joint spacing l¼ lc is obtained in the form

lcðe;hÞ ¼ 2xt þ
2

bh

�
1þ

�
S0 �Ece

Ece


coshðbxtÞ

�
: ð26Þ

Eq. (26) is non-linear since by Eqs. (23) or (24) the extent
of the no-slip region, xt, depends on lc. Accordingly, obtaining
the characteristic joint spacing from Eq. (25) requires the fol-
lowing steps:

1. Check whether Ece> S0; if this condition is not satisfied,
stresses in the competent layer cannot reach a level where
fracture can occur and thus lc/N.

2. Calculate the values of M, k, b, and h from Eqs. (12), (13),
and (21).

3. If h� 1, set xt¼ lc/2 and jump to Step 5.
4. With the current estimate of lc, check whether lc �
ð2=bÞtanh�1ðhÞ. If so, solve (24) for xt iteratively using
l¼ lc; otherwise set xt¼ lc/2.

5. Evaluate lc from Eq. (26) using the current estimate of xt.
6. If the pre-defined convergence tolerance in terms of lc is

not met, go to Step 3.

5.1. Limit cases and saturation spacing

Before the behavior of the joint spacing model Eq. (26) is
investigated in more detail, it is worthwhile to establish some
limit cases.
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5.1.1. The no-slip case
First consider the case on a given applied strain e. At a

sufficiently large depth h, conditions h< 1 and lc �
ð2=bÞtanh�1ðhÞ will not hold and the matrix and competent
layers will be perfectly bonded, i.e. xt¼ l/2. Under this condi-
tion, Eq. (26) reduces, as required, to the explicit joint spacing
model proposed by Ji and Saruwatari (1998) where

lcðe;hÞ ¼
2

b
cosh�1

�
Ece� S0

Ece


; h/N: ð27Þ

One may note that the no-slip limit in Eq. (27) can alterna-
tively be obtained by letting the cohesion c / N in Eq. (14).

5.1.2. The full-slip case
On the other hand, as the applied strain e is increased, the

no-slip region at a given depth will diminish i.e. xt / 0, see
curve ‘‘d’’ in Fig. 2. As a result, cosh(bxt) / 1 so that, by vir-
tue Eqs. (21) and (26), one arrives at the lower bound on joint
spacing

lcðe;hÞ ¼ lmin
c h

S0t

tf

; e/N; ð28Þ

that defines fracture saturation (e.g. Bai and Pollard, 2000a,b;
Bai et al., 2000). Two comments are in order at this point.
First, an essentially identical saturation limit has been devel-
oped for engineered systems, e.g. strained thin ceramic films
(see discussion in Timm et al., 2003) where such limiting
values for the joint (i.e. crack) spacing are experimentally ob-
served (Chen et al., 1999). Secondly, on setting S0 ¼ S, the rig-
orously derived limit in Eq. (28) yields the saturation spacing
that is twice the value obtained in Ji et al. (1998). With refer-
ence to Fig. 1, this disagreement stems from the fact that the
present analysis incorporates the interfacial shear stress at fail-
ure, tf, from both the upper ( y¼ t/2) and lower ( y¼�t/2)
layerematrix interfaces; a feature apparently overlooked in
the earlier study.

In relating to a geology context, three features of the
expression (28) for fracture saturation are highlighted. First,
one may note the limiting value of joint spacing varies linearly
with the competent layer thickness t; a feature that is repeat-
edly observed in the field (e.g. Narr and Suppe, 1991; Gross,
1993; Ji and Saruwatari, 1998). Secondly, due to extended val-
idity of the shear-lag model under the condition of full slip at
the layerematrix interface (see Section 4), the saturation limit
Eq. (28) is valid for all joint-spacing-to-layer-thickness ratios.
This is an important result as it offers a mechanism for the
saturation limit on joint spacing that is not only alternative
to that proposed in Bai and Pollard (2000a,b), but also pro-
vides a rational explanation of the ‘‘closely-spaced’’ joints,
observed in nature at l/t ratios significantly less than unity
(e.g. Ladeira and Price, 1981); a situation that is not permitted
by the earlier model. Finally, by virtue of Eqs. (9), (10) and
(14), expression (28) for fracture saturation can be rewritten as
lcðe;hÞ
t
¼ 0:75

Sþ ghnc

cþ ghtan f
; e/N: ð29Þ

This form of the limiting expression clearly illustrates the
opposing effects of the overburden depth h on joint spacing
as it simultaneously i) increases the spacing via the Poisson ef-
fect in the numerator, and ii) decreases its value via the Mohre
Coulomb failure criterion in the denominator.

6. Results

A main focus of this paper is to understand the effects of
overburden depth on the average joint spacing (9) in stratified
rock systems. In the aforementioned analysis, these effects are
observed both in the definition of the apparent tensile strength
of the competent layer (10) and the interfacial shear strength
according to Eq. (14). In what follows, these influences are ex-
amined in Fig. 7 using the elastic and geometric parameters as
in Ji and Saruwatari (1998). The Figure shows three sets of re-
sults, where ‘‘slip & prestress’’ denotes the full solution; ‘‘slip
only’’ is the special case where the prestress term ncgh in Eq.
(10) is neglected; and ‘‘prestress only’’ is the solution obtained
by artificially setting f¼ 0 and assigning an arbitrary high
value to the cohesion c. In the diagram, a field-observed joint
spacing reported in Ji and Saruwatari (1998) corresponding to
the featured set of elastic parameters is also indicated by the
horizontal dashed line; this value is only provided as a point
of reference and it does not convey the spread that is intrinsi-
cally present in the complete field data.

As shown in Fig. 2, the interfacial shear stress between the
competent layer and the matrix at a given depth varies mono-
tonically along the length of the intact segment. It has maxi-
mum absolute values at the ends of the segment, and a value
of zero at the center. Therefore, a slip will propagate from
the ends of the segment inward with increasing tectonic strain
(see also Ji et al., 1998 and Timm et al., 2003). As the over-
burden depth increases, however, the interfacial shear strength
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increases according to Eq. (14), the length of the slip region
l� xt decreases and, for a given tectonic strain, the tensile
stress in the competent layer builds up (see Fig. 3). In this
way, the joint spacing decreases with depth as shown by the
curve labeled ‘‘slip only’’ in Fig. 7.

In contrast, if slip does not occur (e.g. the cohesion c is suf-
ficiently high), the overburden depth enters the solution exclu-
sively through the prestress term ncgh in Eq. (10) that
increases the apparent strength of the competent layer. In
this way, the joint spacing increases with depth as shown by
curve ‘‘prestress only’’ in Fig. 7.

The full, ‘‘slip & prestress’’ solution incorporating the ef-
fects of overburden via both slip and compressive prestress,
shows the combined effect of the above trends versus depth.
The initial decrease in joint spacing indicates that the overbur-
den pressure-induced reduction of slip dominates the response
up to a depth of approximately one kilometer. Beyond this
value, the interfacial slip becomes negligible and the increase
in the apparent shear strength according to Eq. (14) takes
a lead role in controlling the joint spacing.

The results in Fig. 7 are all generated assuming e¼ 0.00085
for the applied tectonic strain. This value was chosen so that
the minimum ‘‘Slip & prestress’’ joint spacing matches the
reference field observations. For completeness it is noted
that the calculated value of the tectonic strain, reported by Ji
& Saruwatari, 1998 on the basis of the ‘‘no prestress e no-
slip’’ solution is eJS¼ 0.0005. In this context, it is worthwhile
to examine the effect that the layer depth (at the time of joint
formation) has on the value of the estimated tectonic strain.
This is illustrated in Fig. 8 which plots joint spacings with
depth for different values of applied strain. As can be seen
from the graph, for a given observed value of joint spacing, es-
timated-tectonic-strain solution in terms of e may have multi-
ple solutions depending on the assumption of the ‘‘original’’
depth of the competent layer. In particular, one may note
that, whereas a strain value of 0.0004 fails to reach the

0 500 1000 1500 2000 2500 3000 3500

Depth [m]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Jo
in

t s
pa

ci
ng

 [
m

]

ε = 0.0004
ε = 0.0006
ε = 0.00085
ε = 0.0016

Observed

Fig. 8. Average joint spacing (0.75lc) calculated using the full (slip & pre-

stress) solution under varying levels of applied tectonic strain e. Model param-

eters: t¼ 1.2 m, d¼ 0.62 m, Ec¼ 58 GPa, Em¼ 16 GPa, nc¼ nm¼ 0.25,

g¼ 24 kN/m3, S¼ 20 MPa, c¼ 5 MPa, and f¼ 30�.
reference joint spacing, a strain value of 0.0016 will match
the reference joint spacing at two different depths.

Another goal of this work is to quantify the relationship be-
tween the joint spacing and the competent layer thickness, in
particular for the case when joint saturation is reached. To this
end, the behavior of Eq. (29) under various conditions is inves-
tigated; recall that, due to its derivation under a full interface
slip condition, this expression is valid for all joint-spacing-to-
layer-thickness ratios. As an illustration, Fig. 9 plots the ratio
between the (average) saturation joint spacing and the compe-
tent layer thickness, lime/Nðlc=tÞ, against overburden depth h
for various values of the interfacial cohesion c and tensile
strength S of the competent layer. The predicted values span
the range of field observations; Bai and Pollard (2000b), for
example, cite ratios in the range 0.1e10. Of particular note
are the field-consistent predictions of saturation-spacing-
to-thickness ratios below unity. This is contrast to the previous
works (Bai and Pollard, 2000a,b) where the no-slip, 2D anal-
ysis of layered systems indicates that no sufficient tensile
stresses can be generated in competent layer (under any strain)
to induce cracking for the ratios lc=t < 1. Hence, limit (29)
demonstrates that the interfacial slip, manifest via the strength
parameters c and f, provides a plausible and valid explanation
for the field-observed saturation ratios lc=t < 1.

7. Conclusions

A principal objective of a model of joint spacing in sedi-
mentary rocks is to be able to estimate, via matching model
joint spacing predictions to field observations, the tectonic
strain during the formation of geological structures. Previous
work has shown that the mechanics that relates the joint spac-
ing observed in layered sedimentary rock systems to the ap-
plied tectonic strain can be explained by an application of
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shear-lag models. A shortcoming of the reported shear-lag
models is that they do not explicitly account for the effect of
overburden depth. With increasing depth of overburden, on
the one hand, the shear strength of the interface between the
competent layer and the matrix increases; as a result, the
amount (length) of slip along the interface decreases. For
a given strain, a decrease in slip in turn leads to an increase
in the stress transferred to the competent layer and a reduction
in the observed joint spacing. On the other hand, an increase in
overburden depth also increases the horizontal prestress and
consequently the apparent tensile strength of the competent
layer, resulting in a longer joint spacing. This paper has shown
that when overburden depth is included in the shear-lag model,
due to the interplay between the opposing effects of shear
strength and prestress, the predictions of joint spacing with
depth take a characteristic convex-down shape with the mini-
mum value observed at an intermediate depth. This suggests
that an estimate of the tectonic strain undergone by the earth’s
crust might require knowledge of both the joint spacing and
the depth of the layer when the joints were formed. This hy-
pothesis, based on a rigorous development of the mechanics,
needs to be confirmed by the field observations.

Another aspect of the present study is to re-establish the ap-
plicability of the shear-lag model as a reasonable ‘‘first-cut’’
analysis tool for structural geology. In particular, this 1D
model is shown to be (i) consistent with the 2D equilibrium
equations in an average (integral) sense, (ii) physically appli-
cable for joint-spacing-to-thickness ratios down to unity, and
(iii) universally applicable under the condition of full slip be-
tween the competent layer and its matrix. This last feature re-
sults in an explicit formula for the variation of the saturation
joint spacing with depth; a result that leads to, within the
choice of realistic physical parameters and overburden depths,
predicted values of the joint-spacing-to-thickness ratio that
span the range of values observed in the field. In particular,
this result provides a theoretically valid explanation for the
field-observed joint spacings with a joint-spacing-to-thickness
ratio below unity.

In conclusion, it is noted that although the proposed engi-
neering model does provide a sound theoretical argument for
the features and trends of field-observed joint spacings, it
nonetheless operates in a ‘‘clean’’ environment. In reality,
the natural variations within the rock strata will inevitably in-
fluence the observed joint spacing. For example, inherent flaws
in the competent layer will reduce the apparent tensile
strength, decrease the joint spacing, and increase the calculated
spread in the field observations for a given layered system.
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